Lecture Notes on Chemical Pathology and Diagnosis of DM (Role of Clinical Laboratory Medicine)

Dr. Zarghami September 15, 2023

Diabetes: Definition

Group of metabolic diseases

Disturbances of carbohydrate, fat and protein metabolism

Long-term damage, dysfunction, and failure of different organs

Diabetes: Increased risk

Classification of Diabetes

1 Type 1

- Autoimmune disease
- Pancreatic β-cell destruction and
- Absolute deficiency of insulin.

Type 2

- Peripheral resistance to insulin action(Insulin resistance)
- Inadequate secretory response by the pancreatic β cells ("Relative insulin deficiency")

Spe

Specific types of diabetes due to other causes

- · Monogenic diabetes syndromes (Neonatal diabetes, MODY),
- · Diseases of the exocrine pancreas (cystic fibrosis, pancreatitis),

Diabetes: Diagnostic Criteria: ADA guidelines

2-h PG ≥ 200 mg/dL (11.1 mmol/L) during OGTT

(WHO guidelines: using a glucose load 75 g anhydrous glucose dissolved in water.)*

A random plasma glucose ≥ 200 mg/dL (11.1 mmol/L)

(patient with classic symptoms of hyperglycemia or hyperglycemic crisis)

FPG \geq 126 mg/dL (7.0 mmol/L)

Fasting is defined as no caloric intake for at least 8 h.*

$HBA_1C \ge 6.5\%$ (48 mmol/mol)

(Method NGSP certified and standardized to the DCCT assay.)*

OR

*In the absence of unequivocal hyperglycemia, diagnosis requires two abnormal test results from the same sample or in two separate test samples

Type 1 Diabetes

- Autoimmune disease
- Pancreatic β-cell destruction and
- Absolute deficiency of insulin

- Most common form of diabetes in childhood, but it can present at any age
- 10% of diagnosed diabetics
- Progressive decrease in insulin levels
- Most patients depend on exogenous insulin for survival
- Develop ketoacidosis in absence of insulin therapy
- Clinical manifestations occur late

Type 1 Diabetes: Pathogenesis

- Genetic susceptibility
- Class II MHC (HLA-DR) genes
- HLA-DR3, or DR4 or both
- Viral Infections
- (mumps, rubella,
- coxsackie B viruses)

- Failure of self-tolerance in T cells specific for beta cell antigens
- Autoantibodies against a beta cell antigens (insulin, glutamic acid decarboxylase-GAD)

Type 2 Diabetes: Pathogenesis

- ✓ Insulin resistance alone will not lead to diabetes.
- \checkmark It develops in insulin resistant individuals who also show impaired β -cell functions

IR: failure of target tissues to respond normally to insulin(Liver, Muscle, Adipose Tissues)

Type 2 Diabetes: Obesity & Insulin Resistance

Type 1 Diabetes: Metabolic Changes

Ketoacidosis & Hypertriglyceridemia in Type 1 Diabetes

Type 2 Diabetes: Metabolic Changes

Diabetes: Clinical Features: Biochemical Basis

Type 1 Vs Type 2 Diabetes Mellitus

	Type 1 DM	Type 2 DM	
Age of onset	Childhood & adolescence	Usually adulthood	
Nutritional status	Normal weight or weight loss	Obesity (80%)	
Prevalence	10% of diagnosed diabetics	90% of diagnosed diabetics	
Genetic	Linkage to MHC class II genes, HLA DR3 and/or DR4	No HLA Linkage	
Acute complications	DKA in absence of insulin therapy	Hyperglycemic hyperosmolar coma	
Plasma Insulin	Progressive decrease in insulin levels	Increased blood insulin (early), normal or moderate decrease in insulin (late)	
Pathogenesis	Genetic, Environmental, immunologic factors	Insulin resistance in peripheral tissues, Multiple obesity associated factors linked to IR	
Pathology	Autoimmune insulitis	Amyloid deposition in islets(late)	
	Beta cell depletion, islet atrophy	Mild beta cell deletion	

Diabetes-Complications Mechanisms

Diabetes: Complications

Diabetes ketoacidosis Vs Hyperglycemic Hyperosmolar state

- More common in Type 1 DM
- Hyperglycemia
- Dehydration
- Ketosis, Ketonuria
- Increased anion gap acidosis
- Hyperventilation, fruity odor
- Hyponatremia
- Hyperkalemia

- More common in Type 2 DM
- Hyperglycemia
- Dehydration
- Increased plasma osmolarity
- No ketosis
- No ketonuria
- Normal anion gap
- No significant acidosis

Diabetes and Atherosclerosis: Macrovascular Complications

Molecular Mechanisms of Macro/Microvascular complications

Molecular Mechanisms of Macro/Microvascular complications

Hyperglycemia: Activation of Metabolic Pathways 3 **Polyol** Hexosamine Protein kinase C **Glyoxylation Pathways** pathway **Pathway Pathway**

Advanced
Glycation end products
(AGEs)

Modification of

- Intracellular protein
- Extracellular matrix protein and components
- Plasma protein

1: Glyoxylation pathway: Advanced Glycation End Products (AGEs)

2: Activation of Protein kinase C

3: Polyol pathways

Polyol pathway: Sorbitol is a polyhydric sugar alcohol

- Cataract
- Nephropathy
- Neuropathy

4: Hexosamine Pathway

- Increased expression of TGF-β
- Modification of eNOS(Nitric oxide synthase)

Diabetes: Complications

Molecular Mechanisms of Microvascular complications

Diabetes: Diagnosis

	Normal	Prediabetes	Diabetes
HBA ₁ C	< 5.7 %	≥ 5.7 % - 6.4%	≥ 6.5 %
FPG	< 100mg/dl	≥ 100 mg/dl -125 mg/dl	≥ 126 mg/dl
OGTT 2 h PG	< 140 mg/dl	Impaired Fasting Glucose(IFG) ≥ 140 mg/dl - 199 mg/dl	≥ 200 mg/dl
Impaired Glucose Tolerance(IGT)			

Figure 23-24
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Summary

Hypoglycemia: Its Definition, Identification, Prevention, and Treatment

What is the typical range for people with diabetes?

Goals for a Person with Diabetes	Blood Sugar Levels in mg/dL
Fasting (8 hours with no food or drink except water)	80 - 130
2 hours after eating	< 180

How do you know if you have low blood sugar?

dizzy or light-headed

- confused or disoriented
- blurred vision
- fast or irregular heartbeat
- vivid dreams,
 nightmares,
 or sudden awakenings

Severe Symptoms

- unable to eat or drink
- having seizures, convulsions, or jerky movements
- falling unconscious

Hypoglycemic Unawareness

Hypoglycemic Unawareness

The ONLY way to TRULY know if you have low blood sugar is to check with an FDA-approved glucose meter.

Do not take more than is prescribed.

Taking more than is prescribed is dangerous and could lead to hypoglycemia.

Glucometer Reading of Blood Sugar Levels in mg/dL	Recommended Actions	
59 - 70	Eat 15 grams of fast-acting carbohydrates and re-check blood sugar in 15 minutes	
If after 15 minutes, your blood sugar is still below 70	Eat another 15 grams of fast-acting carbohydrates	
80 - 130	Once your blood sugar is in the normal range, eat a small snack to prevent another low.	

What happens if your blood sugar goes too low and you are asleep or unresponsive?

Somebody who finds you unresponsive can easily inject GLUCAGON into your body.

GLUCAGON

What is hypoglycemia?

Hypoglycemia means low blood sugar.

low blood sugar

high blood sugar

o Diabetes mellitus (DM):

Group of metabolic disorders sharing common feature of hyperglycemia.

- One of the top 10 "killers" in the US.
- Associated increased morbidity and mortality

Role of Lab Tests

Diagnosis of DM

Screening of DM

Assessment of glycemic control

Assessment of associated long-term risks

Management of acute metabolic complications.

Diagnostic criteria for diabetes (ADA & WHO)

- A fasting plasma glucose ≥ 126 mg/dL,
- A random plasma glucose ≥ 200 mg/dL (in a patient with classic hyperglycemic signs),
- 2-hour plasma glucose ≥ 200 mg/dL during oral glucose tolerance test (OGTT) with loading dose of 75 gm
- A glycated hemoglobin (HbA1C) level ≥ 6.5%

MPAIRED GLUCOSE TOLERANCE (PREDIABETES)

- A fasting plasma glucose between 100 and 125 mg/dL ("impaired fasting glucose"),
- 2-hour plasma glucose between 140 and 199 mg/dL following a 75-gm glucose OGTT, and/or
- A glycated hemoglobin (HbA1C) level between 5.7% and 6.4%

Diagnostic criteria for diabetes (ADA & WHO)

- A fasting plasma glucose ≥ 126 mg/dL,
- A random plasma glucose ≥ 200 mg/dL (in a patient with classic hyperglycemic signs),
- 2-hour plasma glucose ≥ 200 mg/dL during oral glucose tolerance test (OGTT) with loading dose of 75 gm
- A glycated hemoglobin (HbA1C) level ≥ 6.5%

TESTS

- Blood gluocse
 - Fasting/ PP
 - Random
 - GTT
- Urine for sugars & ketones
- Other tests
 - HbA1C
 - Insulin assay
 - Islet auto-antibodies
 - Lipid Profile
 - Micro-albumin

BLOOD GLUCOSE ESTIMATION

- o can be estimated in whole blood (capillary or venous blood), plasma or serum.
- Sodium fluoride bulb used to prevent glycolysis
- Plasma commonly preferred as WB glucose affected by conc of proteins
- Plasma gluocose levels 15% higher than whole blood glucose

Types of specimens

S

Fasting blood glucose:

 Blood Sample withdrawn after an overnight fast (no caloric intake for at least 8 hours).

Post meal or postprandial blood glucose:

• Blood sample collected 2 hours after the subject has taken a normal meal.

Random blood glucose:

 Blood sample is collected at any time of the day, without attention to the time of last food intake.

METHODS FOR ESTIMATION

- Enzymatic methods:
 - Glucose oxidase-peroxidase
 - Hexokinase
 - Glucose dehydrogenase
- Chemical methods:
 - Orthotoluidine method
 - Blood glucose reduction methods using neocuproine, ferricyanide, or copper.

Diagnostic criteria for diabetes (ADA & WHO)

- A fasting plasma glucose ≥ 126 mg/dL,
- A random plasma glucose ≥ 200 mg/dL (in a patient with classic hyperglycemic signs),
- 2-hour plasma glucose ≥ 200 mg/dL during oral glucose tolerance test (OGTT) with loading dose of 75 gm
- A glycated hemoglobin (HbA1C) level ≥ 6.5%

ORAL GLUCOSE TOLERANCE TEST

- Used for diagnosis of DM & screening n diagnosis of gestation DM
- Screening recommended at 24-28 weeks of gestation in women who were not previously diagnosed with overt diabetes
- Patient preparation in OGTT (recommended by WHO)
 - Test in morning
 - Fasting (no caloric intake for ≥ 8 hours)
 - On day of test, discontinue medications which affect carb metabolism
 - 3 days of unrestricted diet (≥ 150 gms carb per day)
 - Normal physical activity
 - No smoking during the test

One-step diagnosis strategy	Two-step diagnosis strategy
Perform 75-g OGTT with plasma glucose measurement	Step 1:
 Test in the morning after the patient has fasted for ≥8 hours 	Perform a 50-g nonfasting GLT with plasma measurement at 1 hour
 Repeat test at 1 and 2 hours after initial measurement 	 If PG measured 1 hour after the load is ≥140 mg/dL (7.8 mmol/L), proceed to 100-g OGTT
Diagnosis is confirmed when PG levels meet or exceed:	Step 2: • Perform 100-g OGTT while patient is fasting
 Fasting 92 mg/dL (5.1 mmol/L) 1 hr: 180 mg/dL (10.0 mmol/L) 2 hr: 153 mg/dL (8.5 mmol/L) 	Diagnosis is confirmed when two or more PG levels meet or exceed:
	 Fasting: 95 mg/dL or 105 mg/dL (5.3/5.8) 1 hr: 180 mg/dL or 190 mg/dL (10.0/10.6) 2 hr: 155 mg/dL or 165 mg/dL (8.6/9.2) 3 hr: 140 mg/dL or 145 mg/dL (7.8/8.0)

Plasma glucose,mg/dL(mmol/L)

	<u>Normal</u>	<u>Impaired</u>	<u>Diabetic</u>
<u>Fasting</u>	<100	100-125	>/= 126
2-hr(OGTT)	<140	140-199	>/=200

AB TESTS TO ASSESS GLYCEMIC CONTROL

• HbA1c estimation

Self monitoring of Blood Glucose

Glycosuria (Urine examination)

HBA1C ESTIMATION

- To assess long term control (6-12 weeks)
- Glycated hemoglobin refers to hemoglobin to which glucose attached nonenzymatically & irreversibly;
- Its amount depends upon blood glucose level and lifespan of red cells.
- glycated hemoglobin level also correlates with the risk of the development of chronic complications
- Should be less than 7% in diabetics

Self monitoring of blood glucose (SMBG) \$\\$

- For daily monitoring own blood glucose levels
- Insulin dosages can be adjusted
- Portable glucometers
- Devices measure capillary whole blood glucose obtained by fingerprick and use test strips that incorporate glucose oxidase or hexokinase

 May avoid major hypoglycemic attacks

URINE TEST

- o Glucosuria
 - Benedict/Strip

Ketonuria (Rotheras test)

MICROALBUMINURIA

· Urinary excretion of 30-200mg/d of albumin

Precedes other signs of ds. by 10-15 yrs

Earliest indicator of diabetic nephropathy

OTHER TESTS

- Dyslipidemia in type II DM
 - Pt. with borderline high LDL cholesterol (130-160 mg/dL)- high risk of CHD
- Hormones
 - Insulin, C-peptide, glucagon
- Serological tests
 - Type I with islet cell autoAb, insulin autoAb

DIAGNOSIS OF ACUTE COMPLICATIONS

- Diabetic Ketoacidosis (DKA)
- Hyperglycemic hyperosmolar state (HHS)
- Hyperglycemia
- Ketosis
- Insulin deficiency
- Volume depletion
- Metabolic acidosis

LABORATORY EVALUATION CONSISTS

Blood and urine glucose

2

- Blood and urine ketone
- Arterial pH, Blood gases
- Serum electrolytes (sodium, potassium, chloride, bicarbonate)
- Blood osmolality
- o Serum creatinine and blood urea.

DIAGNOSIS OF ACUTE COMPLICATIONS

	DKA	HHS
Glucose (gm/dL)	250-600	600-1200
Creatinine	Slightly	Moderately
Osmolality (mOsm)	300-320	300-380 mOsm
Ketones	++++	+/-
pH	6.8-7.3	>7.3
Anion gap	>12	Variable
Sr Bicarbonates	<15 mEq/L	>15 mEq/L

CHARTS- CLINICAL CASES

A 65 yr old asymptomatic female came for routine investigations. On examination, patient is obese without any obvious abnormality. Routine CBC, Random blood sugar and urine examination done.

- Lab Investigations-
 - Hb- **10 gm**%
 - Random sugar- 295 mg/dl
 - Urine examination
 - oBenedicts test positive.

CASE 2

o A 25 yr old male presented with burning micturation, increased frequency of micturation, unexplained fatigue and slight dizziness since last 1 month. On examination, patient is moderately built without any obvious abnormality.

- Lab Investigations-
 - Hb-**12.5 gm**%
 - Random sugar- 255 mg/dl
 - Urine examination-
 - •Benedicts test positive.
 - oUrine microscopy- 20 -25 pus cells/ hpf

Repeat investigations after one week

- Fasting plasma glucose- 170 mg/dl
- Postprandial plamsa glucose- 240 mg/dl

• A 45 yr old male IT professional came for routine annual medical examination. On examination he was having central type of obesity and his blood pressure was 150/90 mm of Hg. Routine CBC, Random sugar and urine examination advised.

- Lab Investigations-
 - Hb-**13.5 gm**%
 - Random sugar- 165 mg/dl
 - Urine examination- No abnormality detected.

Repeat investigations after one week

- Fasting plasma glucose- 115 mg/dl
- Postprandial plamsa glucose- 170 mg/dl

2

• A 57 yr old female was brought to the emergency in semicomatose condition. She was immediately transferred to ICU and blood samples were taken for routine examination after primary management.

Lab Investigations-

• Hb- 8.5 gm%

• ABG showed

• Blood pH- 7.1

Blood ketones- +++

Sr bicarbonates- 14 mEq/L

Random sugar- 375 mg/dl

• Hb1Ac- 11%

Urine examination-

• Benedicts test- Positive.

Sulphosalycylic test- Positive.

•Rotheras test-

• A 32 yr old pregnant female came for routine examination. She had a history of previous baby died at birth which was large for age weighing 4.5 kgs.

- Lab Investigations-
 - Hb- 8.5 gm%
 - PBS- Microcytic hypochromic
 - Urine examination- No abnormality detected.

Three hour OGTT was performed and showed

- Fasting plasma glucose- 105 mg/dl
- o One hr plasma glucose- 190 mg/dl
- Two hr plasma glucose- 170 mg/dl
- Three hr plasma glucose- 155 mg/dl

De.

• 7 year old male child came with complaints of fatigue, increased frequency of urination, increased frequency of thrust, hunger.

- On Examination
 - Unintended weight loss
 - Increased irritability.

- Lab investigation
 - ≽FBS- 350 mg/dl
 - ▶ Urine Examination
 - ▶ Urine appearance Clear, pale
 - ightharpoonup Urine sugar 4 +
 - Urine ketone -++
 - >24 hour Urine volume 2500 ml / day

B

❖ 45 years old obese male patient came with complaints of weakness, increased frequency of thrust, hunger, increased frequency of urination.

- On Examination
 - ➤ Patchy dark velvety skin at armpits and neck.

- Lab investigation,
 - > FBS- 180 mg/dl,
 - ► PP **380 mg/dl**
 - > Urine:
 - Appearance Clear pale
 - Fasting Urine sugar 🐈
 - Post prandial Urine Sugar ++++
 - Urine Protein Raised
 - Pus cells -10-12 / hpf

- 35 years old male came with complaints of increased frequency of urination at night.
- H/O Familial diabetes mellitus to father and elder brother.
- Lab investigation
 - ► FBS 124 mg/ dl,
 - PP Blood Sugar- 178 mg/dl
 - Vrine Pale yellow
 - Urine sugar Nil
 - Urine protein Nil

- 24 years old female with 6 month of amenorrhea came with complaints of polyhydromnios, Pregnancy Induced Hypertension.
- h/o familial diabetes mellitus
- Lab Investigation
 - > FBS- 118 mg/dl
 - > OGTT 3 hour
 - Fasting 118 mg/dl
 - •Fasting plasma glucose-105 mg/dl
 - One hr plasma glucose- 190 mg/dl
 - oTwo hr plasma glucose- 170 mg/dl
 - oThree hr plasma glucose- 155 mg/dl

- o 45 yrs male, presenting with c/o
 - Polyuria
 - Polydypsia
 - Weight loss
- Fasting blood glucose
 150mg/dl
- Post prandial blood glucose 220mg/dl

- o 10 yr male,
- H/ o unexplained weight loss
- History of repeated infections at various sites
- Fasting BG 150 mg/DL
- o Post prandial BG 340 mg/dl
- Serum insulin levels decreased (10 Miu/L)

- o 55 yr female
- Presented with nausea, vomiting, giddiness
- Laboratory Investigations:

Random BG

550mg/dl

Urine Sugar

++++

Urine ketone

+++

• HbA1c

13.5%

B

-2) en
n
s)
tion
hate,
imuria)
nsul i n)
isumi)